Common Core Standards	Converted/Unpacked Standards	
Standards Code: OA=Operations and Algebraic Thinking, NBT=Number and Operations in Base 10, MD=Measurements and Data, G=Geometry, NF=Number and Operations-Fractions, RP=Rations and Proportional Relationships, NS= Number System, EE=Expressions and Equations, SP=Statistics and Probability, A=Algebra.		
CC.2.OA. 1 Represent and solve problems involving addition and subtraction. Use addition and subtraction within 100 to solve one- and two-step word problems involving situations of adding to, taking from, putting together, taking apart, and comparing, with unknowns in all positions, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	I can identify the number of steps to solve a word problem. I can identify an unknown number in an equation using addition and subtraction up to 100 . I can identify the strategy/strategies for solving word problems. I can use addition and/or subtraction to solve 2 step word problems within 100. (CCSS 2.OA 1)	
CC.2.OA. 2 Add and subtract within 20. Fluently add and subtract within 20 using mental strategies. By end of Grade 2, know from memory all sums of two one-digit numbers.	I can use mental strategies (e.g., count on, make a ten) to add or subtract numbers within 20 with ease. (CCSS 2.OA 2) I can recall from memory all sums of two one-digit (0-9) numbers. (CCSS 2.OA 2)	
CC.2.OA. 3 Work with equal groups of objects to gain foundations for multiplication. Determine whether a group of objects (up to 20) has an odd or even number of members, e.g., by pairing objects or counting them by 2 s ; write an equation to express an even number as a sum of two equal addends.	I can identify a group of objects as being even or odd using different strategies. (CCSS 2.OA 3) I can write an equation to show an even sum has the same addends (e.g. $5+5=10,6+6=12$). (CCSS 2.OA 3)	
CC.2.OA. 4 Work with equal groups of objects to gain foundations for multiplication. Use addition to find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 columns; write an equation to express the total as a sum of equal addends.	I can use addition to find the total number of objects in an array. (CCSS 2.OA 4) I can write an addition equation (e.g. $3+3+3=9$) to express the total as a sum of equal addends. (CCSS 2.OA 4) I can represent the total number of objects arranged in a rectangular array as an expression with the repeated addition of number of objects in each row or column. For example, if there are 3 rows with 4 objects in each row, I can write the expression $4+4+4$. (CCSS 2.OA 4)	
CC.2.NBT. 1 Understand place value. Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: -- a. 100 can be thought of as a bundle of ten tens - called a "hundred." -- b. The numbers $100,200,300,400,500,600,700,800,900$ refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0	I can represent and explain the place value of the digits of a three-digit number as hundreds, tens, and ones. I can explain the value of zeros in a hundred as zero tens and zero ones. (CCSS: 2.NBT.1)	

Grade 2

tens and 0 ones).		
Common Core Standards	Converted/Unpacked Standards	
CC.2.NBT. 2 Understand place value. Count within 1000; skip-count by 5s, 10s, and 100s.	I can count within 1000. (CCSS: 2.NBT.2) I can skipcount by $5 \mathrm{~s}, 10 \mathrm{~s}$, and 100 s . (CCSS: 2.NBT.2)	
CC.2.NBT. 3 Understand place value. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.	I can read and write numbers to 1000 using base-ten numerals, number names, and expanded form. (CCSS: 2.NBT.3)	
CC.2.NBT. 4 Understand place value. Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons.	I can compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of comparisons. (CCSS: 2.NBT.4)	
CC.2.NBT. 5 Use place value understanding and properties of operations to add and subtract. Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	I can add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction. (CCSS: 2.NBT.5)	
CC.2.NBT. 6 Use place value understanding and properties of operations to add and subtract. Add up to four two-digit numbers using strategies based on place value and properties of operations.	I can add up to four two-digit numbers using strategies like rearranging or making tens depending on the numbers being added. (CCSS: 2.NBT.6)	
CC.2.NBT. 7 Use place value understanding and properties of operations to add and subtract. Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	I can use my understanding of place value and properties of operations to add and subtract. I can use concrete models or drawings to show how to add within 1000 using a strategy based on place value (collecting the hundreds, collecting the tens, and collecting the ones, and when necessary, composing ten ones to make a ten or composing ten tens to make a hundred). (CC.2.NBT.7)	
CC.2.NBT. 8 Use place value understanding and properties of operations to add and subtract. Mentally add 10 or 100 to a given number 100-900, and mentally subtract 10 or 100 from a given number 100-900.	I can add and subtract using place value and properties of operations. I can mentally add subtract 10 to a given number 100-900. (CC.2.NBT.8)	
CC.2.NBT. 9 Use place value understanding and properties of operations to add and subtract. Explain why addition and subtraction strategies work, using place value and the properties of operations. (Explanations may be supported by drawings or objects.)	I can explain why addition and subtraction strategies work, using place value and the properties of operations. I can use drawings or objects to support my explanations.(CC.2.NBT.9)	
CC.2.MD. 1 Measure and estimate lengths in standard units. Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.	I can select and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes to measure the length of an object. (CCSS: 2.MD.1)	
CC.2.MD. 2 Measure and estimate lengths in standard units. Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.	I can measure the length of an object twice, using length units for the two different measurements. I can describe how the two measurements relate to the size of the unit chosen. (CCSS: 2.MD.2)	
CC.2.MD. 3 Measure and estimate lengths in standard units. Estimate lengths using units of inches, feet, centimeters, and meters.	I can estimate lengths using units of inches, feet, centimeters, and meters. (CCSS: 2.MD.3)	

Common Core Standards	Converted/Unpacked Standards	
CC.2.MD. 4 Measure and estimate lengths in standard units. Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.	I can measure to determine how much longer one object is than another. I can express the length difference in terms of a standard length unit. (CCSS: 2.MD.4)	
CC.2.MD. 5 Relate addition and subtraction to length. Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.	I can add and subtract lengths of the same unit within 100. (CCSS: 2.MD.5) I can solve word problems involving lengths that are given in the same units. (CCSS: 2.MD.5) I can use drawings and equations with a symbol for the unknown number to represent the problem. (CCSS: 2.MD.5)	
CC.2.MD. 6 Relate addition and subtraction to length. Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.	I can create a number line with whole number intervals. I can represent whole numbers on a number line. I can find sums and differences within 100 using a number line. (CCSS: 2.MD.6)	
CC.2.MD. 7 Work with time and money. Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.	I can tell and write time from analog and digital clocks using the following terminology: half past, quarter after/past, quarter to, minutes after/past, and minutes to. (CCSS: 2.MD.7) I can understand the difference between a.m. and p.m. (CCSS: 2.MD.7)	
CC.2.MD. 8 Work with time and money. Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using \$ (dollars) and ϕ (cents) symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?	I can identify and give the value of dollar bills, half dollars, quarters, dimes, nickels, and pennies. (CCSS: 2.MD.8) I can use \$ (dollar) ϕ (cents) symbols appropriately. (CCSS: 2.MD.8) I can solve a word problem with dollar bills, quarters, dimes, nickels, and pennies. (CCSS: 2.MD.8)	
CC.2.MD. 9 Represent and interpret data. Generate measurement data by measuring lengths of several objects to the nearest whole unit, or by making repeated measurements of the same object. Show the measurements by making a line plot, where the horizontal scale is marked off in whole-number units.	I can measure and record the lengths of several objects to the nearest whole number. (CCSS: 2.MD.9) I can create a line plot with a horizontal scale marked off in whole number units. I can record length measurements on a line plot. (CCSS: 2.MD.9)	
CC.2.MD. 10 Represent and interpret data. Draw a picture graph and a bar graph (with single-unit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.	I can solve problems with data in graphs by using addition and subtraction. (CCSS: 2.MD.10) I can make comparisons between categories in the graph using more than, less than, etc. with up to four sets of data. (CCSS: 2.MD.10) I can draw a picture or bar graph to represent a given set of data with up to four categories. (CCSS: 2.MD.10)	

Grade 2

Common Core Standards	Converted/Unpacked Standards	
CC.2.G.1 Reason with shapes and their attributes. Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes. (Sizes are compared directly or visually, not compared by measuring.)	I can identify the attributes (sides, faces, angles) to describe shapes (triangles, quadrilaterals, pentagons, hexagons and cubes). (CCSS: 2.G.1) I can draw a shape when told its attributes. (CCSS: 2.G.1)	
CC.2.G.2 Reason with shapes and their attributes. Partition a rectangle	I can draw rows and columns of equal size in a into rows and columns of same-size squares and count to find the total rectangle. I can count the equal size squares in a number of them.	
rectangle. (CCSS: 2.G.2)		

